B. REPORTS

GEOCHEMISTRY OF THE REHOBOTH BASEMENT GRANITOIDS, SWA/NAMIBIA

G.F.U. Stoessel and U.R.F. Ziegler

KAW Laboratory for Isotope Geology, University of Berne, CH-3012 Berne, Switzerland

ABSTRACT

Geochemical analyses of 102 samples are reported from the 25 largest intrusive bodies of the Gamsberg, Piksteel and Weener Intrusive Suites within the Rehoboth basement inlier. It is shown that all the analysed granitoids are peraluminous and that they plot on calcalkaline differentiation trends. The high alumina saturation of most of the analysed samples suggests an upper crustal origin for most of the Gamsberg, Piksteel and Weener magmas.

1. INTRODUCTION

The large bodies of intrusive granitoids underlying the Rehoboth area of SWA/Namibia were first investigated by De Kock (1934). He described these granitoids as granites, diorites, quartz diorites and quartz porphyries which were derived from a common magma source. De Waal (1966) distinguished between the Nauchas Granite Suite which comprised the Gamsberg, Piksteel, Koepel and Korabis granites, a green granodiorite and the Weener Quartz Diorite. SACS (1980) renamed the Nauchas Granite Suite the 'Gamsberg Granite Suite', but excluded the Piksteel Granodiorite which was believed to belong to an earlier magmatic event.

The aim of this study is to provide more data on the geochemical relationships between the granitoids in the Rehoboth basement and to investigate the possibility of further subdividing these intrusives.

2. LITHOLOGY AND FIELD RELATIONS

2.1 Gamsberg Granite Suite

The Gamsberg Granite Suite, hereafter abbreviated to GGS, is made up predominantly of large plutons which have intruded both meta-volcanosedimentary formations, viz. the Mooirivier, Neuhof, Elim, Marienhof, Gaub Valley, Nückopf and Grauwater Formations, and older granitoids, viz. the Piksteel Intrusive Suite and the Weener Intrusive Suite. Smaller plutons of the GGS are irregularly distributed throughout the Rehoboth area.

U/Pb and Rb/Sr age determinations of the GGS have yielded a range of ages between 1 092 \pm 40 Ma and 1 210 Ma (Mailing, in prep.; Seifert, 1986a; Burger *et al.*, 1973, 1973-74, 1975-76), while Nückopf volcanics yielded ages between 1 080 Ma and 1 232 Ma (Burger *et al.*, 1973, 1973-74, 1975-76).

Granites of the GGS are typically greyish to reddish

in colour, mostly medium- to coarse-grained and occasionally porphyritic. These granites further exhibit moderate alteration and saussuritization, sometimes with significant growth of muscovite and epidote. In the northern parts of the area, towards the southern margin of the Damara Orogen, the granites may develop a strong foliation together with widespread albitization of plagioclase and recrystallization of quartz.

2.2 Piksteel Intrusive Suite

In this report the term 'Piksteel Intrusive Suite' (PIS) is preferred to the term 'Piksteel Granodiorite' introduced by SACS (1980), since this unit comprises not only granodiorites but to a large extent also consists of granites and tonalites. Rocks of the PIS, first described by De Waal (1966), occur throughout the Rehoboth basement area and have intruded the Weener Intrusive Suite as well as the Mooirivier, Neuhof, Elim, Marienhof and Gaub Valley Formations. These granitoids have in turn been intruded by plutons of the GGS. U/Pb age determinations range between 1 430 Ma and 1630 Ma (Burger *et al.*, 1973-74 and 1975-76), while a single Rb/Sr isochron for the Swartmodder Granite of the PIS yielded an age of 1 660 Ma (Mailing, 1978).

Granitoids of the PIS are mostly greyish to greenish in colour, fine- to medium-grained and often porphyritic. They show wide compositional variation from granite through granodiorite to tonalite. In contrast to the GGS these granitoids exhibit widespread and pervasive saussuritization. A strong foliation, sometimes shear-related, is developed in the northern and eastern parts of the Rehoboth basement.

2.3 Weener Intrusive Suite

Tonalites, quartz diorites, diorites and granodiorites of the 'Weener Intrusive Suite' (WIS), previously termed

Majorelamor	ote in ut%												
Major elemer SAMPLE	G01	G02	G03	G04	G05	G06	G07	G08	609	610	612	612	C1
SiO ₂	75,82	74,33	68,43	72,06					G09	G10	G12	G13	G14
TiO ₂	0,07	0,19	0,80	0,42	72,80 0,45	72,94 0,50	72,72 0,48	72,49 0,35	72,93 0,31	71,04 0,32	72,24 0,21	71,39 0,19	71,45 0,57
Al ₂ O ₃	12,55	13,06	13,54	12,53	13,04	12,64	12,63	13,16	13,22	13,55	13,89	13,53	13,02
Fe ₂ O ₃	0,71	1,17	4,95	2,47	2,49	2,46	2,56	1,88	1,83	2,17	1,54	1,13	3,64
MnO MgO	0,07 0,28	0,03 0,38	0,11 1,27	0,04 0,52	0,06 0,69	0,05 0,69	0,06	0,03	0,03	0,06	0,04	0,05	0,07
CaO	0,60	0,65	2,41	1,45	1,27	0,84	0,74 1,54	0,51 0,62	0,53 0,68	1,11 1,41	0,64 0,97	0,61 1,08	0,82 1,74
Na ₂ O	4,08	2,48	2,66	2,52	2,96	2,61	2,79	2,45	2,54	3,09	3,44	3,31	2,76
K₂O	4,22	5,79	3,80	5,31	5,27	5,32	4,90	5,81	5,72	4,47	5,07	5,06	4,07
P₂O₅ Cr₂O₃	0,08 0,01	0,06 0,01	0,21 0,02	0,07 0,01	0,11 0,01	0,14 0,01	0,09	0,06	0,07	0,09	0,07	0,07	0,22
NiO	0,01	0,01	0,02	0,01	0,01	0,01	0,01 0,01	0,01 0,01	0,01 0,01	0,01 0,01	0,01 0,01	0,01 0,01	0,01 0,01
	0,40	0,56	1,26	0,65	0,44	0,90	0,56	0,87	1,14	1,39	0,76	0,75	0,85
SUM	98,90	98,71	99,47	98,05	99,60	99,11	99,09	98,25	99,02	98,72	98,89	97,19	99,23
Trace elemer													
Nb Zr	18 57	111	263	10 248		14 239	11 286	259	225	153	115	00	22
Y	8	18	36	55		239	42	30	225	22	115 20	99 13	101 25
Sr	107	192	274	56		138	146	86	108	251	185	171	237
Rb	197	132	140	282		184	166	205	212	207	237	221	285
Th Pb	54	23	13	25		04	13	13		15	14		38
Ga	20	14	18	22 16		21 17	17 17	18	18 15	20 18	31 18	18	57
Zn	25	14	45	37		41	40	41	26	43	29	16 27	22 32
Cu Ni		48		0.					20	-2	25	27	24
Co Cr	22	16	24	18		15	106	160	12	14	89	85	
v						53		32		52	22		
Ce		78	125	117		135	108	85	81	62	46		
Nd Ba	146	1 801	62 1 004	37 709		59	45	1 000	1 100		-	700	
La	140	61	88	64		1 112 105	1 156 97	1 003 56	1 100 51	1 001 74	782 46	726 45	739
Sc S			9	9		10	8	50	51	/4	40	40	
SUM	654	2 494	2 101	1 705		2 167	2 258	1 988	1 873	1 941	1 634	1 421	1 582
Detection limi	its:												
Nb11 Zr23 Ni12 Co3	Y5 Sr16 Cr26 V26		Th 13 Pb 1 Nd 26 Ba		Zn 18 Cu Sc 7 S 2								
Majorelemen	nts in wt%												
SAMPLE	G15	G16	G17	G18	G19	G20	G21	G22	G23	G24	G25	G26	G27
SiO ₂	74,27	69,19	68,25	77,67	67,66	69,48	73,08	70,22	68,03	74,28	71,19	73,76	76,90
TiO ₂	0,18	0,45	0,59	0,12	0,68	0,54	0,16	0,31	0,46	0,16	0,29	0,20	0,07
	12,27	13,62	13,48	11,09	13,53	15,59	13,72	14,17	13,87	12,94	12,72	12,99	12,56
⁼e₂O₃ MnO	1,33 0,06	3,10 0,07	3,87	1,02	4,40	3,00	1,28	2,70	2,57	1,21	1,85	1,35	0,82
MgO	0,00	0,56	0,08 1,07	0,01 0,38	0,08 1,07	0,08 0,97	0,04 0,61	0,05 1,37	0,06	0,05	0,05	0,05	0,03
CaO	0,59	1,87	2,44	0,02	2,61	0,88	0,92	2,03	1,09 1,58	0,33 0,79	1,03 1,59	0,49 1,15	0,23 1,02
Na ₂ O	2,98	3,20	3,14	2,18	2,95	3,73	3,37	3,02	3,18	3,11	3,23	3,55	2,58
K₂O	5,03	4,83	4,62	5,63	4,37	5,57	4,79	3,74	5,41	5,22	4,30	4,60	5,61
	0,06	0,12	0,18	0,07	0,19	0,14	0,07	0,13	0,14	0,04	0,07	0,05	0,02
Cr₂O₃ NiO	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,01
_0	0,66	0,80	0,84	0,60	0,93	0,93	0,01 0,87	1,63	0,75	0,53	0,67	0,01 0,48	0,44
SUM	97,70	97,82	98,57	98,80	98,48	100,92	98,93	99,38	97,15	98,67	97,00	98,70	100,29
Frace elemen	its in ppm												
Nb Zr	213	211	228	23 94	245	AFF	195	050	000	14			
Y	31	38	40	94 40	245	455 32	135 14	256 17	226 31	118 25	141 21	117	105
Sr	106	131	217	21	232	165	265	223	219	109	171	15 154	251
Rb	160	199	165	355	165	111	131	112	148	244	180	221	154
⊡h ?b	16	16		14						13			
Ga	12	18	17	17	18	19	27 17	18	16	33	45	20	24
In	41	41	51	18	52	60	31	48	16 45	18 19	15 30	18 26	15
)u Ii					9	11			-10		12	20	
20 27	26	110	103	94	90	101	10	143	17	11 -	83	107	13
л /	151	39	56		59	31		40	32				
Ce Ce	138	96	143		144	256	52	134	32 95		47		
	42	29			50	106		44	33				
ld	510		1 052	142	1015	2 117	1 461	1 602	1 254	521	566	705	1 059
ld Ba	516	698											
ld Ba Ja Sc	516 69 11	698 61 7	91 10		66 11	182 12		98	66 7				
Nd Ba .a Sc SC SUM	69	61	91	818	66	182	2 143	98 596 3 331					

TABLE 1: Major and trace element analyses of the Gamsberg Granite Suite (no data recorded where concentration of trace element is below detection limit).

Detection limits: Nb11 Zr23 Y5 Sr16 Rb14 Th13 Pb16 Ga5 Zn18 Cu9 Ni12 Co3 Cr26 V26 Ce46 Nd26 Ba40 La44 Sc7 S216

Table 1 — continued

.

Major elemen		000	004	000	000	004	005	007	000	0.00	040	040	G44
SAMPLE	G28	G29	G31	G32	G33	G34	G35	G37	G39	G40	G42	G43	
SiO₂	70,57	76,67	76,76	73,29	70,70	73,58	65,05	67,41	72,50	70,74 0,60	73,35	72,38 0,39	72,80 0,33
TiO2 Al2O3	0,44 13,45	0,30 10,14	0,13 11,90	0,18 13,75	0,29 12,99	0,43 13,28	0,83 14,78	0,34 14,62	0,28 12,35	14,59	0,24 13,47	12,76	12,38
Fe ₂ O ₃	2,92	1,46	0,89	0,83	1,84	2,07	4,60	2,94	1,52	3,23	1,65	1,96	1,77
MnO	0,07	0,08	0,03	0,03	0,05	0,07	0,10	0,08	0,05	0,08	0,05	0,05	0,04
MgO	0,81	0,55	0,20	0,36	1,19	0,54 0.67	1,74	1,82	0,77 0,68	0,86 1,72	0,72 0,87	0,74 1,25	0,76 0,94
CaO Na ₂ O	1,61 2,75	7,71 0,19	0,06 3,28	1,09 4,33	0,91 2,76	3,28	3,03 3,51	2,51 4,54	3,14	3,37	3,51	3,07	3,39
K₂Ō	5,17	1,09	4,85	4,00	5,57	4,94	3,67	3,21	4,96	4,61	4,66	4,97	4,65
P2O5	0,13	0,08	0,03	0,08	0,09	0,08	0,25	0,14	0,06	0,22	0,06	0,12	0,09
Cr2O3 NiO	0,01	0,01	0,01	0,02	0,01	0,01	0,01	0,01	0,01	0,01 0,01	0,01	0,01	0,01
LOI	0,01 0,93	0,01 1,17	0,50	0,01 0,62	0,73	0,70	1,07	1,90	0,68	1,04	0,63	0,49	0,52
SUM	98,87	99,46	98,64	98,59	97,13	99,65	98,64	99,52	97,00	101,08	99,22	98,19	97,68
Trace elemen	nts in ppm												
Nb		11	16			14	12			18			
Zr	251	276	123	99	200	321	364	144	190	316	172	220	194
Y Sr	36 175	46 597	11 24	7	15 154	23 185	63 468	7 446	22 115	23 310	23 152	23 186	8 144
Rb	251	66	284	261 90	153	155	400	102	153	111	174	141	149
Th	23	22	13										
Pb	23	69	18	38						10		45	
Ga Zn	19 50	16 96	20	17	17 26	19 46	19 70	16 52	15 25	18 51	20 26	15 28	15 20
Cu	33	90		313	20	40	/0	52	20	51	20	20	20
Ni		1											
Co Cr	112	123	9	93	126	13	23	86	94	16	168	110	156
v	60				27	44	92	42		94		30	
Ce	147	150			112	135	197		87	134	73	129	59
Nd	51	57		504	27	39	92	4 070	017	48		41	700
Ba La	915 115	250 75	100 58	594	1 135 85	1 377 86	2 195 111	1 278	917	1 402 105	1 117	1 024 66	780
Sc	7	/5	7		05	10	10			11		00	
s													
SUM	2 268	1 854	683	1 512	2 077	2 467	3 811	2 173	1 618	2 657	1 925	2 013	1 525
Major elemen	Cr26 V26	Ce 46	Nd 26 Ba	40 La 44	Sc7 S21	_							
SAMPLE	G45	G46	G47	G48	G49	G50	G51	G52	G53	G54	G55	G56	G57
SiO ₂	75,63	75,04	68,67	70,47	75,21	71,02	73,60	72,36	65,55	67,77	69,82	76,62	70,97
TiO ₂	0,14	0,06	0,64	0,47	0,08	0,46	0,40	0,50	0,89	0,83	0,62	0,11	0,41
Al ₂ O ₃	12,00	12,04	13,82	13,24	12,77	12,98	12,69	12,87	13,59	14,19	12,34	11,77	13,17
Fe ₂ O ₃	0,94	1,23	4,16	3,11	1,06	2,70	2,47	3,02	6,02	5,27	3,80	0,86	2,18
MnO MgO	0,07 0,26	0,03 0,28	0,09 1,10	0,07 0,77	0,04 0,15	0,06	0,06 0,71	0,07	0,11 1,66	0,11 1,30	0,08 1,00	0,02 0,19	0,05 0,69
CaO	0,54	0,28	2,36	1,92	0,15	0,66 1,55	1,22	0,81 1,31	3,54	2,70	1,78	0,13	1,28
Na ₂ O	3,35	3,26	2,99	2,99	3,36	2,78	2,72	2,59	3,88	3,10	2,79	2,90	3,58
K₂O	4,91	5,03	4,60	4,99	5,04	4,74	4,86	4,86	1,81	3,85	4,30	5,18	4,80
P ₂ O ₅ Cr ₂ O ₃	0,02 0,02	0,01 0,01	0,17 0,02	0,10 0,01	0,01	0,09	0,08 0,02	0,10	0,21	0,27 0,02	0,17	0,06 0,01	0,22 0,01
NiO	0,02	0,01	0,02	0,01	0,01	0,01	0,02	0,02 0,01	0,01	0,02	0,01	0,01	0,01
LOI	0,33	0,49	0,79	0,72	0,59	0,64	0,65	0,82	0,76	0,94	0,67	0,56	0,68
SUM	98,22	98,02	99,42	98,87	98,68	97,69	99,49	99,34	98,03	100,36	97,38	98,41	98,05
Trace elemer	nts in ppm												
Nb	15	36	13		25			15		13		20	
Zr Y	102	81	247	200	102	243	203	246	187	239	199	93	172
Y Sr	16 22	107	41 168	39 133	93	41 108	36 116	39 111	37 218	40 196	36 130	93 17	17 165
Rb	304	415	152	186	294	171	165	181	76	115	158	283	149
Th	25			15	14							20	34
Pb Ga	30 17	17	17	23	28	40	17	10	10	19	9	18 14	10
Zn	17	23 39	18 59	16 36	20 41	15 36	16 34	16 38	16 84	68	75	14	13 29
Cu					••			50	15		14		20
Ni									14				
Co Cr	14	144	23	14	87	79	19	19	24	28	45	103	10
v			78	37		33	51	81	136	78	48		52
Ce	92		132	189		119	132	138	117	163	93		181
Nd Ba	117	77	69 1 304	85		40	58	56	41	78	49	60	33 730
La	117 75	11	1 304	924 125	84	1 032 69	1 087 93	957 108	997 46	1 282	1 256 68	63	118
Sc	7		15	. 9		10	11	14	14	15	10	7	
S	696	000	2 4 4 2	2.004	700	1 000	0.000	0.010	0.000	0.464	0.100	704	1 700
SUM Detection lim	836	939	2 442	2 031	788	1 996	2 038	2 019	2 022	2 461	2 190	731	1 703

Detection limits: Nb11 Zr23 Y5 Sr16 Rb14 Th13 Pb16 Ga5 Zn18 Cu9 Ni12 Co3 Cr26 V26 Ce46 Nd26 Ba40 La44 Sc7 S216

Major eleme	nts in wt%						
SAMPLE	G58	G59	G	60			
SiO ₂	76,57	75,90	75,	12			
TiO ₂	0,25	0,09	0.	50			
Al ₂ O ₃	12,00	12,00	13,	25			
Fe ₂ O ₃	1,25	0,49		34			
MnO	0.03	0,01	-,				
MgO	0,31	0,23	0,	21			
CaO	0,37	0,58		37			
Na ₂ O	2,85	2,22		74			
K₂Ô	5,40	6,33		10			
P ₂ O ₅	0.04	0,03		17			
Cr ₂ O ₃	0,01	0,01		02			
NIO	0,01	0,01	0,				
LOI	0,39	0,40		15			
SUM	99,48	98,30	99,	98			
Trace eleme	nts in ppm						
Nb							
Zr	164	48					
Ÿ	48						
Sr	72	208					
Rb	132	116					
Th	102						
Pb							
Ga	12	10					
Zn	12	10					
Cu							
Ni							
Co	48	23					
Cr	40	20					
v							
Če .	94						
Nd	94						
Ba	514	1 090					
La	81	1030					
Sc	01						
S							
SUM	1 165	1 495					
Detection lim	its:						
Nb11 Zr23	Y5 Sr16	Rh 14	Th 13	Ph 16	Ga 5	7n 18	Cug

Nb11 Zr23 Y5 Sr16 Rb14 Th13 Pb16 Ga5 Zn18 Cu9 Ni12 Co3 Cr26 V26 Ce46 Nd26 Ba40 La44 Sc7 S216

TABLE 2: Major and trace element analyses of the Piksteel Intrusive Suite (no data recorded where concentration of trace element is below detection limit).

0014	2 036 its:	1 895	2 503	2 391	2 305	849	3 054	3 057	1 504	1.433	1 692	1 993	557
SUM	2 038	1 895	0.500	0.001	0.005								
Sc		8	17		8		12	8	7	8	11	11	
a			89	65	65		78	55	150	179	104	46	
За	1 176	1 047	1 103	1 187	1 351	89	1 700	1 614	591	330	510	995	
Nd			64	26	48		40	39	78	71	33		65 39
Ce		70	119	78	137		75	94	98	273	304	50	6
v			95	. 56	50		117	61				56	
Cr	.0	.,	27		1.4	00	42	00	12	17	00	15	5
Co	15	17	26	17	14	65	23	14 88	12	17	66	15	
Ni			12				30 16	16				73	
Cu	21	44	52 72	36	41	20	60 30	53 16		21	41	57	28
Zn	21	20 44	20 52	18 38	16 41	18	18	21	15	15	17	17	17
Ga	26 18	20			40	30			17	19			
Th Pb						37				18	14		
Rb	92	120	170	94	88	379	149	77	187	149	146	77	
Sr	470	256	206	630	233	26	525	694	47	37	52	402	309
Y	31	41	45	11	11	65	20	21	72	31	41	17	
Zr	189	272	386	171	243	104	149	202	217	254	341	227	90
Nb			12			16			13	11	12		
Trace eleme	nts in ppm												
SUM	99,27	97,75	99,20	98,82	99,07	98,08	98,92	98,59	98,75	99,15	99,11	98,54	98,6
						0,56	2,25	1,71	0,40	0,31	0,47	1,66	3,9
	0,01	1,75	1,29	0,01 0,96	0.83	0.50	0,01	4 74	0.40	0,01	0,01	0,01	
Cr ₂ O ₃ NiO	0,01 0,01	0,01	0,02 0,01	0,01	0,01	0,01	0,02	0,01	0,02	0,01	0,01	0,01	0,0
P ₂ O ₅	0,10	0,16	0,21	0,12	0,10	0,01	0,26	0,19	0,04	0,03	0,04	0,18	0,0
K₂O	4,24	4,02	4,08	3,73	3,93	4,92	4,89	3,03	4,39	5,40	5,66	2,11	0,2
Na ₂ O	2,22	3,03	2,29	3,38	3,58	3,24	3,48	3,75	3,22	3,09	3,42	4,03	6,4
CaO	3,16	2,44	2,78	2,58	1,22	0,69	3,71	3,65	0,09	0,36	0,49	2,32	12,1
MgO	0,81	0,95	1,02	0,99	0,61	0,09	2,50	1,69	0,15	0,23	0,28	1,35	0,9
MnO	0,06	0,08	0,07	0,05	0,07	0,04	0,09	0,07	0,03	0,06	0,05	0,10	0.0
Fe ₂ O ₃	3,05	3,96	5,47	2,69	2,41	1,10	4,75	4,23	1,72	1,98	2,32	4,07	1,4
Al ₂ O ₃	13,26	13,70	13,30	14,92	13,61	12,35	17,20	15,78	11,31	11.83	13,03	14,27	20,9
TiO2	0,47	0,60	0,85	0,41	0,41	0,12	0,70	0,63	0.22	0,21	0,27	0.52	0,1
SiO2	71,00	67.05	67,81	68,97	72,29	74,95	59.06	63,85	77,16	75,63	73,06	67,91	52,1
SAMPLE	P01	P02	P03	P04	P05	P06	P08	P09	P11	P12	P13	P15	P1

Detection limits: Nb11 Zr23 Y5 Sr16 Rb14 Th13 Pb16 Ga5 Zn18 Cu9 Ni12 Co3 Cr26 V26 Ce46 Nd26 Ba40 La44 Sc7 S216 Table 2 --- continued

.

				Aajor elements in wt%													
Major elemer	nts in wt%																
SAMPLE	P17	P18	P20	P21	P22	P23	P24	SWA18	SWA19	SWA21	SWA22	SWA23	SWA2				
SiO ₂	76,30	58,77	68,40	72,33	72,51	54,19	70,21	72,37	70,64	70,86	74,68	71,81	70,0				
TiO ₂	0,18	0,81	0.32	0,30	0,32	0,91	0,64	0,09	0,18	0,16	0,16	0,17	0,3				
Al ₂ O ₃	12,47	16,78	15,59	13,79	14,11	15,76	15,78	14,82	15,38	15,03	12,66	15,27	14,3				
Fe ₂ O ₃	1,57	6,82	2,87	2,46	2,35	8,33	3,12	0,82	1,69	1,50	0,97	1,42	2,4				
MnO	0,04	0,16	0,06	0,03	0,03	0,14	0,10	0,03	0,05	0,05	0,03	0,04	0,0				
MgO	0,58	3,20	1,31	1,03	1,06	6,16	1,09	0,24	0,56	0,48	0,11	0,38	1,0				
CaO	0,87	5,66	2,20	1,84	1,95	7,32	2,65	2,01	2,19	2,42	0,86	2,29	1,9				
Na ₂ O	3,95	2,83	5,18	2,47	2,54	3,43	4,09	4,05	4,15	4,37	2,86	4,71	3,4				
K₂Ô	1,97	2,20	2,59	3,25	3,29	2,29	2,37	3,25	3,04	2,39	4,89	2,47	4,4				
P205	0,05	0,31	0,15	0.09	0.09	0,37	0,19	0.03	0,10	0,07	0,03	0,12	0,1				
Cr ₂ O ₃	0,01	0.02	0.02	0.01	0,01	0,02	0,01	0.01	0,01	0,01	0,01	0,01	0,0				
NiO	0,01	0,01	0,01	0.01	0,01	0,02			0,01				0,0				
LOI	1,23	2,61	0,69	1,48	1,29	1,80	1,14	0,71	1,46	0,61	0,64	0,76	1,0				
SUM	99,23	100,18	99,39	99,01	99,56	100,74	101,39	98,43	99,46	97,95	97,90	99,45	99,1				
Trace elemen	nts in ppm																
Nb			17				12				22						
Zr	91	199	274	136	86	86	404	65	105	105	109	100	15				
Ŷ	51	22	29	7	00	20	29				25		1				
Sr	240	570	177	518	384	774	351	758	789	1 018	128	904	30				
Rb	58	87	137	64	98	74	63	65	70	51	165	58	15				
Th	50	0,	14	04	00		00	00		•	16						
Pb			37						21	19	28	19					
Ga	16	19	18	19	13	18	20	15	22	20	18	20	1				
Zn	28	131	26	48	21	89	39		26	40		32	3				
Cu	17	53	20	-10	17	69	23		18				1				
Ni		28				65											
Co	103	27	10	18	11	63	14	14	78	71	64	64	11				
Cr	100	34		10		144											
v		109		54	34	191			27				4				
Če		79	94	83	0.	204	104				62						
Nd		39	33	33		106	47						3				
Ba	740	899	1 323	898	1 765	1 112	1 438	2 474	2 071	1 870	453	1 717	94				
La	/ 40	56	64	63	32	53	47						7				
Sc		10	0.4	~~		24	8										
s		10				2.1	Ũ										
SUM	1 293	2 362	2 253	1 941	2 461	3 092	2 599	3 391	3 227	3 194	1 090	2 914	1 89				

Detection immits: Nb11 Zr23 Y5 Sr16 Rb14 Th13 Pb16 Ga5 Zn18 Cu9 Ni12 Co3 Cr26 V26 Ce46 Nd26 Ba40 La44 Sc7 S216

Major eleme	nts in wt%								
SAMPLE	SWA25	SWA26	SWA27	SWA28	SWA29	SWA30	SWA31	SWA32	SWA33
SiO ₂	70,15	53,40	65,17	67,49	69,41	69,14	73,17	71,39	70,29
TiO ₂	0,33	0,68	0,82	0,47	0,21	0,37	0,15	0,19	0,31
Al ₂ O ₃	13,94	18,67	14,65	14,79	14,80	14,76	14,39	15,00	15,16
Fe ₂ O ₃	2,36	6,64	5,29	3,41	1,92	2,69	1,46	1,69	2,53
MnO	0,06 -	0,12	0,10	0,06	0,04	0,07	0,04	0,05	0,06
Mgo	0,83	4,23	1,45	1,21	0,58	0,86	0,32	0,50	0,74
CaO	1,96	7,22	2,40	2,83	2,18	2,64	1,79	1,92	2,15
Na ₂ O	3,27	3,25	3,29	3,22	4,13	4,09	3,74	4,41	3,99
K ₂ Ô	4,30	2,73	4,36	4,04	3,28	2,96	3,70	3,11	3,10
P ₂ O ₅	0,11	0,15	0,27	0,15	0,08	0,12	0,04	0,08	0,12
Cr ₂ O ₃	0,01	0,01	0,02	0,01	0,01	0,01	0,01	0,01	0,01
NIŌ		0,01	-						
LOI	0,94	2,26	1,37	1,15	0,70	0,50	0,54	0,73	1,00
SUM	98,26	99,37	99,19	98,83	97,34	98,21	99,35	99,08	99,46
Trace eleme	ents in ppm								
Nb			12						
Zr	152	76	322	207	112	128	104	105	156
Y	25	21	37	23		18			
Sr	264	737	369	421	832	738	723	666	611
Rb	180	76	92	129	62	70	68	54	58
Th									
Pb	18		21				20		
Ga	18	24	23	19	20	23	18	20	22
zn	34	81	91	48	37	58	35	42	63
Cu		84	15	17	12				14
Ni		55		12					
Co	62	55	49	74	51	68	59	82	76
Cr		45							
v	38	128	60	54	34	32			37
Ce	85	130	156	139		47			54
Nd	27	68	69	47					
Ba	823	1 069	2 0 3 5	1 490	1 680	904	1 876	1 693	1 381
La	62		119	71					
Sc	-	19	13						
S									
SUM	1 788	2 668	3 483	2 751	2 840	2 086	2 903	2 662	2 472

Uetection limits: Nb11 Zr23 Y5 Sr16 Rb14 Th13 Pb16 Ga5 Zn18 Cu9 Ni12 Co3 Cr26 V26 Ce46 Nd26 Ba40 La44 Sc7 S216

the 'Weener Quartz Diorite' (SACS, 1980), were first described by De Waal (1966). The granitoids of the WIS are confined to the western part of the Rehoboth area where they have intruded the Mooirivier, Elim and Gaub Valley Formations and have in turn been intruded by rocks of the PIS. The fine-to medium-grained rocks of the WIS are generally greyish to brownish in colour. Besides plagioclase, quartz, biotite and minor amounts of potassium feldspar, the occurrence of bluish amphiboles is distinctive. Accessory minerals include muscovite, sphene, opaque minerals, epidote, clinozoisite, garnet, apatite, chloritoid and chlorite (after biotite). As in the GGS and PIS, the granitoids of the WIS are locally strongly sheared and folded.

3. METHOD

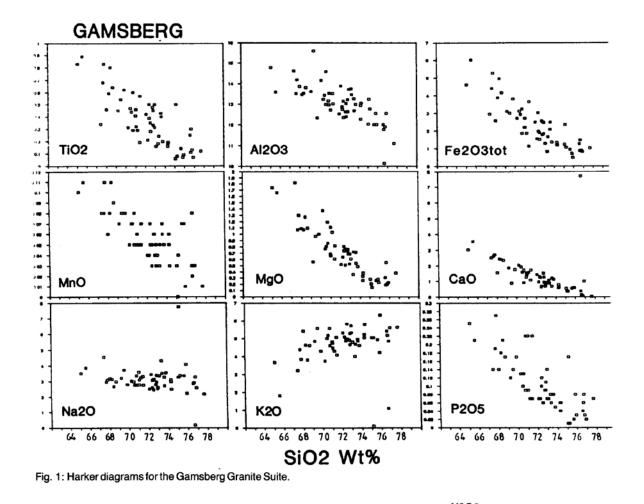
A total of 102 samples with a mass of between 2 and 30 kg each was collected from the 25 largest intrusive bodies within the Rehoboth basement. Analyses of 11 major and 20 trace elements were carried out on a Philips PW1400 X-ray fluorescence spectrometer at the University of Fribourg, Switzerland (Tables 1-3). Loss on ignition was determined by heating of an aliquot of each sample for two hours at 1150 °C.

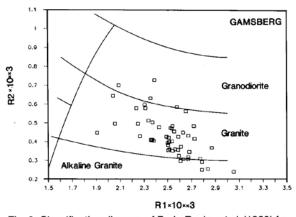
4. GEOCHEMISTRY

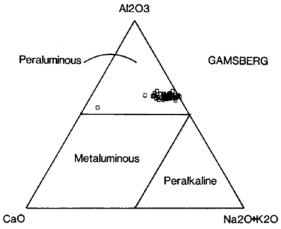
4.1 Gamsberg Granite Suite

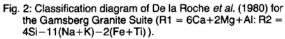
The relatively linear patterns obtained in the Harker variation diagrams (Fig. 1) probably reflect original magmatic processes and suggest that the effect of postcooling alteration was minimal. Data for 55 samples were plotted on the R1 versus R2 diagram of De la Roche et al. (1980) in order to chemically classify members of this suite (Fig. 2). The vast majority of the data points fall within the 'granite' field with only a slight scatter of data points into the 'alkaline granite' and 'granodiorite' fields. According to Shand (1927) and Chappell and White (1974), the degree of alumina saturation allows a first order classification of granitoids. Accordingly, the data were plotted on a wt. % Al_2O_3 -CaO-(Na₂O+K₂O) ternary diagram (Fig. 3), which illustrates that all samples have $Al_2O_3 > (Na_2O+K_2O+CaO)$ and can, therefore, be classified as peraluminous. The generally high degree of alumina saturation for most of the Gamsberg granitoids is further illustrated in the mol. % Al₂O₃ versus mol. % (CaO+Na₂O+K₂O) diagram (Fig. 4) where the ratio A/CNK exceeds unity. However, the degree of alumina saturation is insufficient to classify these granitoids as S-type granites according to Chappell and

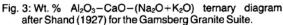
TABLE 3: Major and trace element analyses of the Weener Intrusive Suite (no data recorded where concentration of trace element is below detection limit).


Major element	s in wt%											
SAMPLE	W01	W02	W03	W06	W07	W08	W09	W10	W11	W12	W13	W14
SiO ₂	66,82	68,89	63,68	68,38	61,05	58,53	64,56	64,86	60,33	50,49	51,31	48,4
TiO ₂	0,39	0,32	0,49	0,54	0,88	0,86	0,84	0,84	0,83	1,53	1,51	0,89
Al ₂ O ₃	14,86	14,71	14,84	13,84	16,42	15,39	15,30	15,55	15,97	14,38	14,95	18,3
Fe ₂ O ₃	3,29	2,57	4,18	3,20	7,39	8,74	6,48	6,12	6,78	14,50	13,97	11,62
MnO	0,07	0,08	0,08	0,06	0,12	0,15	0.09	0,10	0,11	0,24	0,25	0,18
MgO	2,05	1,37	2,76	0,94	3,04	3,87	3,44	2,29	3,22	5,58	6.09	7,35
CaO	3,00	1,46	3,92	2,06	4,78	5,82	3,32	3,86	5,26	8,88	7,97	10,58
Na ₂ O	3,60	3,17	2,87	3,22	3,38	2,92	3,64	2,93	3,45	2,99	3,47	1,72
K₂Ō	3,64	4,72	3,83	4,63	1,96	1,79	2,40	2,87	1,75	0,82	1,02	0,34
P2O5	0,18	0,14	0,21	0,15	0,19	0,14	0,20	0,15	0,18	0.33	0,29	0,07
Cr ₂ O ₃	0,01	0,02	0.01	0,01	0.01	0,01	0.01	0.01	0,02	0.03	0,03	0.02
NIO	0,01	0,01	0,01	-,	0,01	0,01	0,01	0,01	0,02	0.03	0,03	0,02
LOI	1,10	1,16	1,88	0,69	1,13	1,61	0,81	1,22	0,86	0,75	0,70	2,2
SUM	99,02	98,62	98,76	97,72	100,36	99,84	101,10	100,81	98,78	100,55	101,59	101,80
Trace element	s in ppm											
Nb				13								
Zr		130	152	258	173	155	175	188	167	238	255	5
Y		8	11	42	52	49	31	33	25	51	52	14
Sr		290	605	267	313	277	246	274	369	187	217	230
Rb		144	100	140	65	61	97	85	54	33	36	200
Th						•••	•••	00	0.1			
Pb		25										
Ga		19	19	18	20	19	18	20	20	22	24	20
Zn		140	35	41	76	75	59	68	72	125	124	102
Cu		48	9	13	51	66	11	54	46	48	70	43
Ni		17	45		50	61	54	31	63	51	69	103
Co		93	83	61	84	70	69	88	50	79	96	91
Cr			51		50	72	63	39	91	177	193	167
v		46	68	37	121	159	110	114	141	192	200	20
Ce		50	93	126	97	140	97	103	102	217	186	164
Nd			37	49	65	79	46	54	53	118	107	98
Ba		1 674	1 732	1 315	741	353	723	1 429	1 067	214	305	85
La		58		80		500	120	44	63	56	54	
Sc			7	7	19	23	15	13	12	50	55	32
s						20	.0			902		45
SUM		2 472	3 0 4 7	2 467	1 977	1 659	1 814	2 637	2 395	2 760	2 013	1 860


No11 Zr23 Y5 Sr16 Rb14 Th13 Pb16 Ga5 Zn18 Cu9 Ni12 Co3 Cr26 V26 Ce46 Nd26 Ba40 La44 Sc7 S216


White (1974) since the A/CNK ratio is generally less than 1,1.


On an AFM diagram of Kuno (1968), the data points of the GGS clearly define a calc-alkaline trend (Fig. 16). In the tectonic discriminant diagram of Pearce *et al.* (1984), the relatively low Rb, Nb and Y contents of these granitoids result in the majority being classified as 'Volcanic Arc Granites' (Fig. 5) However, since high alumina contents and low Nb and Y values are thought to be typical of crustal melt granitoids (Pearce *et al.*,


1984; McDermott, 1986), it can be proposed that the peraluminous Gamsberg Granite Suite represents I-type upper crustal melts. This proposal broadly coincides with the high ⁸⁷Sr/⁸⁶Sr initial value of 0,708 which has been reported by Reid *et al.* (1988). However, while the low ⁸⁷Sr/⁸⁶Sr initial ratios of between 0,700 and 0,702 reported by Seifert (1986a, b) confirm I-type magmatism for the GGS, they do not support an upper crustal source.

4.2 Piksteel Intrusive Suite

Linear data arrays for 36 Piksteel samples on Harker diagrams (Fig. 6) probably reflect magmatic processes. However, non-linear scatter of data points in plots of Na₂O and K₂O versus SiO₂ are most probably the result of post-intrusive alteration (saussuritization) processes. The diagram of De la Roche et al. (1980) illustrates that the PIS is made up largely of granodiorite with lesser

plutons of granite, alkali granite, diorite, quartz monzonite and tonalite (Fig. 7). All of these granitoids plot within the peraluminous field on a wt. % Al₂O₂-CaO-(Na₂O+K₂O) diagram (Fig. 8). In the mol. % Al₂O₃ versus mol. % (Na₂O+K₂O+CaO) diagram (Fig. 9) the wide range of A/CNK values from less than 1,0 to greater than 1,4 contrasts markedly with the Gamsberg data. The strong alumina over saturation (A/CNK > 1,1) of many of the Piksteel samples suggests an S-type origin,

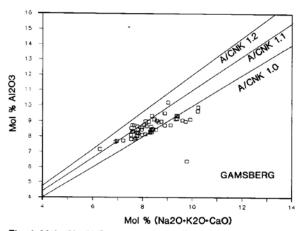


Fig. 4: Mol. % Al₂O₃ versus mol. % (CaO+Na₂O+K₂O) diagram for the Gamsberg Granite Suite showing A/CNK alumina saturation values after Chappell and White (1974).

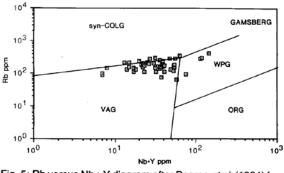
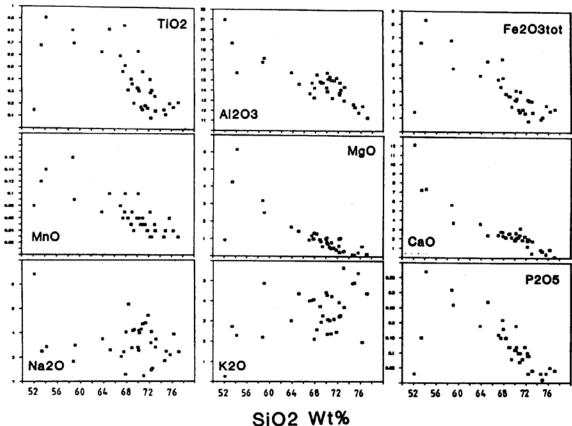



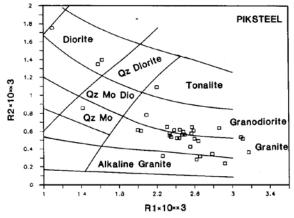
Fig. 5: Rb versus Nb+Y diagram after Pearce et al. (1984) for the Gamsberg Granite Suite (VAG = Volcanic Arc Granites; syn-COLG = syn-Collision Granites; WPG = Within Plate Granites; ORG = Ocean Ridge Granites).

Fig. 6: Harker diagrams for the Piksteel Intrusive Suite.

PIKSTEEL

while the few samples which plot below the A/CNK = 1,1 line are probably of I-type origin.

Again, the Piksteel samples which define a calc-alkaline trend in the AFM diagram of Kuno (1968, Fig.



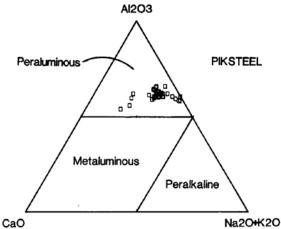
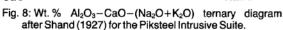



Fig. 7: Classification diagram of De la Roche *et al.* (1980) for the Piksteel Intrusive Suite (R1 = 6Ca+2Mg+Al: R2 = 4Si-11(Na+K)-2(Fe+Ti)).

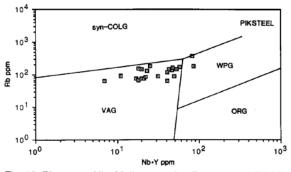
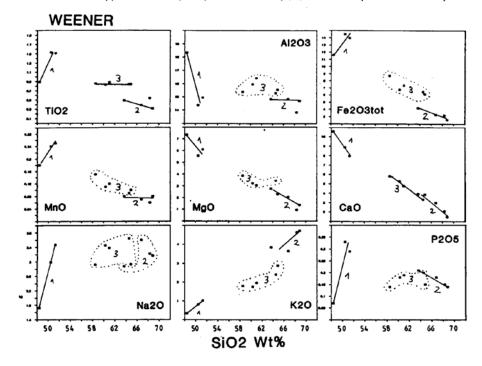



Fig. 10: Rb versus Nb+Y diagram after Pearce *et al.* (1984) for the Piksteel Intrusive Suite (VAG = Volcanic Arc Granites; syn-COLG = syn-Collision Granites; WPG = Within Plate Granites; ORG = Ocean Ridge Granites).

- Fig. 9: Mol.% Al₂O₃ versus mol.% (Na₂O+K₂O+CaO) diagram for Piksteel granitoids showing A/CNK alumina saturation values after Chappell and White (1974).
- Fig. 11: Harker diagrams for the Weener Intrusive Suite (1, 2, 3 = different plutons of the WIS).

16), are classified as 'Volcanic Arc Granite' according to Fig. 10. Also here the low contents of Rb, Nb and Y and the peraluminous nature are indicative of an upper crustal origin. A crustal origin is supported by the high initial ⁸⁷Sr/⁸⁶Sr ratios for Piksteel intrusives obtained by Reid *et al.* (1988) which range between 0,707 and 0,709. Insufficient geochemical data exists at present to allow an overall genetic interpretation.

However, detailed work on single intrusions and the application of isotope geochemistry will enable us to elucidate the genetic relationships between the different members of the PIS.

4.3 Weener Intrusive Suite

A total of 12 samples was collected from the three largest bodies of the WIS. Despite plotting on similar differentiation trends in Harker diagrams (Fig. 11), the data points can be grouped together on a regional basis. The WIS is made up of granite, granodiorite, tonalite, diorite and gabbro as indicated by the diagram of De la Roche *et al.* (1980; Fig. 12). As for the GGS and PIS, all the Weener samples are peraluminous according to a wt. % Al₂O₃-CaO-(Na₂O+K₂O) plot (Fig. 13). However, A/CNK ratios of the WIS are, although being within the range of the PIS, notably higher than those of the GGS and the major part of the PIS (Fig. 14). A/CNK ratios above 1,1 indicate an S-type origin for the Weener rocks according to the criteria of Chappell and White (1974).

An S-type origin is supported by the low Rb, Nb and Y contents which classify these granitoids as 'Volcanic Arc Granites' (Fig. 15) according to Pearce *et al.* (1984), but is in contradiction to the relatively low ⁸⁷Sr/⁸⁶Sr values of 0,700-0,705 reported for the WIS by Seifert (1986a, b) and Reid *et al.* (1988).

5. SUMMARY

All the analysed samples of granitoids from the Rehoboth basement area are peraluminous according to the criteria of Shand (1927) and Chappell and White (1974). The GGS, PIS and WIS are calc-alkaline in character according to the AFM diagram of Kuno (1968; Fig. 16). A/CNK ratios indicate an S-type origin for the Weener granitoids, an S- or I-type origin for the Piksteel granitoids and an I-type origin for the Gamsberg granitoids. These results only partly coincide with isotopic data of Reid *et al.* (1988) and Seifert (1986a, b) which favour I-type origins for almost all of the Rehoboth granitoids. However, the high alumina saturation of most of the analysed samples suggests that the vast majority of the granitoids in the Rehoboth basement inlier are derived from upper crustal melts.

6. ACKNOWLEDGEMENTS

This study is being carried out as part of a University

Research Project sponsored by the Geological Survey of SWA/Namibia. We wish to thank Prof. E. Jäger and Dr. R.McG. Miller for supervising the project and D. Vuichard for his kind help in getting the XRF system going. A first manuscript was kindly reviewed and corrected by B. Hoal of the Geological Survey.

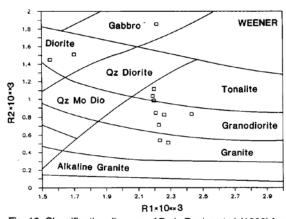


Fig. 12: Classification diagram of De la Roche *et al.* (1980) for the Weener Intrusive Suite (R1 = 6Ca+2Mg+AI; R2 = 4Si-11(Na+K)-2(Fe+Ti)).

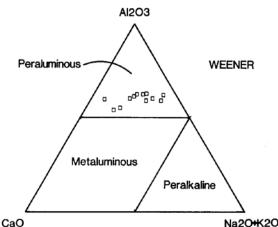


Fig. 13: Wt. % Al₂O₃-CaO-(Na₂O+K₂O) ternary diagram after Shand (1927) for the Weener Intrusive Suite.

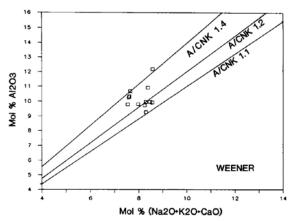


Fig. 14: Mol.% Al₂O₃ versus mol.% (Na₂O+K₂O+CaO) diagram for the Weener Intrusive Suite showing A/CNK saturation values after Chappell and White (1974).

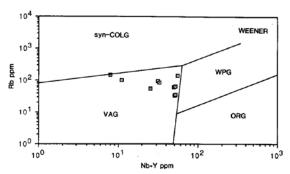


Fig. 15: Rb versus Nb+Y diagram after Pearce *et al.* (1984) for the Weener Intrusive Suite (VAG = Volcanic Arc Granites; syn-COLG = syn-Collision Granites; WPG = Within Plate Granites; ORG = Ocean Ridge Granites).

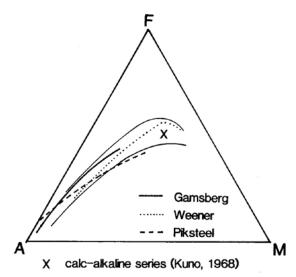


Fig. 16: Trends for all the analysed Rehoboth granitoids on an AFM diagram after Kuno (1968).

7. REFERENCES

- Burger, A.J. and Coertze, F.J. 1973. Radiometric age measurements on rocks from Southern Africa to the end of 1971. *Bull. geol. Surv. S. Afr.*, 58, 46 pp.
- Burger, A.J. and Coertze, F.J. 1973-74. Age determinations - April 1972 to March-1974. Ann. geol. Surv. S. Afr., 10, 135-141.
- Burger, A.J. and Coertze, F.J. 1975-76. Summary of age determinations carried out during the period April 1974 to March 1975. *Ann. geol. Surv. S. Afr.*, **11**, 317-321.
- Burger, A.J. and Walraven, F. 1975-76. Summary of age determinations carried out during the period April 1975 to March 1976. Ann. geol. Surv. S. Afr., 11, 323-329.
- Chappell, BW. and White, A.J.R. 1974. Two contrasting granite types. *Pacific Geol.*, **8**, 173-174.
- De Kock, W.P. 1934. The geology of the Western Re-

hoboth, an explanation of Sheet F33-W3. Mem. Dep. Mines, S.W. Afr., 148 pp.

- De la Roche, H., Leterrier, J., Grandchaude, P. and Marchal, M. 1980. A classification of volcanic and plutonic rocks using R1-R2 diagram and major element analyses - its relationships with current nomenclature. *Chem. Geol.*, **29**, 183-210.
- De Waal, SA 1966. The Alberta Complex, a metamorphosed layered intrusion north of Nauchas, South West Africa, the surrounding granites and repeated folding in the younger Damara system. D.Sc. thesis (unpubl.), Univ. Pretoria, 203 pp.
- Kuno, H. 1968. Differentiation of basaltic magma. *In*: Hess, H.H. and Poldervaart, A. (Eds), *Basalts*. Wiley Intersciences Publ., New York, pp. 623-688.
- Mailing, S. 1978. Some aspects of the lithostratigraphy and tectonometamorphic evolution in the Nauchas-Rehoboth area, South West Africa/Namibia. *14th and 15th a. Reps, Precambr. Res. Unit, Univ. Cape Town*, 183-193.
- Mailing, S. (in prep.). Metamorphism, geochronology and other aspects of the crustal evolution at the southern margin of the Damaran Orogenic Belt, South West Africa/Namibia. Ph.D. thesis, Univ. Cape Town.
- McDermott, F. 1986. Granite petrogenesis and crustal evolution studies in the Damaran Pan-African orogenic belt, Namibia. Ph.D. thesis (unpubl.), Open Univ., London, 303 pp.
- Pearce, A.J., Harris, N.BW. and Tindle, A.G. 1984. Trace element discrimination diagrams for the tectonic interpretation of igneous rocks. *J. Petrol.*, 25, 956-983.
- Reid, D.L., Mailing, S. and Allsopp, H.L. 1988. Rb-Sr ages of granitoids in the Rehoboth-Nauchas area, South West Africa/Namibia. *Communs geol. Surv. S.W. Africa/Namibia*, 4, 19-27 (this volume).
- Seifert, N.L. 1986a. Geochronologische Untersuchungen an Basement Gesteinen am Suedrand des Damara-Orogens, S.W.A./Namibia. Diss. (unpubl.), Univ. Bern, 126 pp.
- Seifert, N.L. 1986b. Geochronologie am Suedrand des Damara-Orogens SWA/Namibia: Hydrothermale Beeinflussungen von Isotopensystemen und Abkuehlalter in praekambrischen Basementgesteinen. Schweiz. mineral. petrogr. Mitt., 66, 413-451.
- Shand, S.J. 1927. Eruptive rocks. Wiley, New York, 488 pp.
- South African Committee for Stratigraphy (SACS), 1980. Stratigraphy of South Africa. Part 1 (Comp. Kent, L.E.). Lithostratigraphy of the Republic of South Africa, South West Africa/Namibia and the Republics of Bophuthatswana, Transkei and Venda. *Handb. geol. Surv. S. Afr.*, **8**, 690 pp.